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ELASTIC AS LIMIT OF VISCOELASTIC RESPONSE,

IN A CONTEXT OF SELF-SIMILAR VISCOUS LIMITS

1. INTRODUCTION

The equations describing one-dimensional, isothermal motions of elastic materials in

Lagrangean coordinates are
Du - 9.V = 0

(E)at V - 0.'( u,) = O .

Under the assumption

Oau(l,) > 0 (H)

they form a pair of strictly hyl)erbolic conservation laws with characteristic speeds Al(u) =

- v•/a,,(it) ,A.,((u) = + VG,,(u). As a model for nonlinear elastic response (E) provides an

appro)priate description for both lonlgittudinlal and shearing motions. In the former case IL

stands for the longitudinal strain (or specific volume) and takes strictly positive values,

i(1) is the (exte'nsivNe or coiipressive) normal stress and v is the velocity. In the latter

case u describes the shear strain, taking now values on the whole real line, a(u) stands for

the shear stress and v for the velocity in the shearing direction.

It is well known that, due to wave brcaking phenomena pertaining to nonlinear elastic

response, (E) does not in general admit globally defined smooth solutions. One approach

for obtaining admissible weak solutions is to view elastic as the limiting case of viscoelastic

response and attempt to construct solutions of (E) as limits of solutions of associated

viscoelastic models, such as

DO - Oav = 0
(VE)

0 v - Da(u)=e 0, (k(u) 0.v),

as the viscosity . -- 0; above k(u) = 1/u, u E (O,oo), for longitudinal motions while

k(u) = 1, u E (-oo, oc), for shearing motions. Despite recent advances regarding viscous
0

limits via the method of comilpensated conllpactness (e.g. DiPerna [Dp]), the understanding -

of the limiting process remains incomplete even for the case of Riemaiin data

uu-+ x<<O ,- > <0
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In a notable exception, for data corresponding to a single shock in (E), Hoff and Liu [HLI

obtain detailed information on the qualitative properties of the viscous solution and justify

the inviscid limit.

Due to the invariance under dilations of coordinates (x, t) -* (ax, at), a > 0, the

Riemann problem for (E) admits solutions of the form (u(I), v(!)), functions of the

single variable c = .. These are constructed as weak solutions on (-00, oc) of the problem

'(=0 (1.2)

u(±oo) = -u , V(±::c) = V± (1.3)

subject to appropriate admissibility criteria at shocks (Tupciev [Tull. Wendroff [W]. Liu

[L] for general strictly hyperbolic systems).

Our objective is to justify (1.2 - 1.3) as the 0 limit of solutions to the boundary

value problem
-• • G(./.'( ) •"' =•(1.4)

with data (1.3), and to investigate the admissibility restrictions imposed by the limiting

process. The problem (1.4 - 1.3) is denoted by (Pr). It is studied with the intent to reveal

aspects of the more complex relationship between (VE) and (E).

The study of self-similar viscous limits was proposed in the articles by Kalasnikov

[Na] and Dafermos [D1 ]. It is motivated by introducing an artificial regularization

C9 11 - _9.r = 0 (1.5)
o~v - ar,(,(u) = t a,(k(u),.,) v)

that preserves the invariance under dilations of coordinates. Problem (1.5 - 1.1) admits

as solutions functions of the single variable ý = x/t, constructed by solving ('P,). The

approach leads to the study of nonautonomous boundary value problems such as (P,),

and involves variation estimates for effecting the --, 0 limit to solve the Riemann prob-

lem. The procedure has been carried out for various systems of two conservation laws,

both hyperbolic [Di, D2 , DDP. KKr, STzJ as well as of mixed type [Si, Fa]. The two

regularizations have been directly compared for Burgers' equation [S2].
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We adopt the following hypotheses on constitutive functions. For shearing motions

a(u) is a C2-function defined on the real line that satisfies (H) and has the behavior

a(u) -- -00 as i --+ -oo, a 0(u) -- c as u -- oo. (H)s

For longitudinal motions a(u) is C2-function on (0, oo) satisfying (H) and

a(u) --+ -c as u --+ 0+, a(u) --.+ c as u -+ oc. (H)L

The latter guarantees that infinite compression is associated with infinite compressive

stress. It also requires that infinite extension is associated with infinite extensive stress,

what excludes the case of gases. The precise form of k(u) has no influence on our analysis

as long as k(iu) is a strictly positive smooth function; in the models under study k(iu) =

for shearing motions while k(u) = 1/u for longitudinal motions. The Riemann data u±. v+

are taken arbitrary for shearing motions, but satisfy ui+, u- > 0 for longitudinal motions.

The goals set in this article are (i) to construct solutions of the boundary value problem

(P•), 6 > 0 fixed, (ii) to pass to the limit . -- 0 and solve the Riemann problem, (iii) to

investigate the structure of the emerging solution. Existence follows from an application

of the Leray-Schauder degree theory to a construction scheme that captures the interplay

between the "parabolic" and "hyperbolic" terms in (1.4). Based on a-priori estimates

developed in Section 2, the construction is carried out in Section 3. Following that in

Section 4, the passage to the r ---, 0 limit is performed, in a framework of uniform in c

bounds for the total variation and making use of Helly's theorem. The outcome of the

first two steps can be summarized as follows: Under hypotheses (H)s or (H)L, given any

data (u±, v±), e > 0 the boundary value problem (P,) admits a solution. Given a family

{(ue, vC)}->o of such solutions there exists a subsequence {(u., v,,)}, with e,, -+ 0, such

that u,, --. u, v,, --+ v pointwise on the reals. The function (u, v) is of bounded variation

and a weak solution of the Riemann problem (1.2 - 1.3).

The structure of the limit function (u, v) is undertaken in Section 5. The equations of

elasticity (E) are covered as a special case in Dafermos [D2 ], on systems of two conservation

laws with a full viscosity matrix. Although seeral ideas from [D21 are used, this work is

based on a special property associated with the full viscosity matrix which is not applicable
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here. Instead, we follow the strategy used in Tzavaras [Tz] for the Broadwell model.

One starts with certain representation formulas expressing the derivatives (u',, v') as

averaging processes and shows that there are finite signed Borel measures A, v so that

(u', v') -- (A, v) weak- * in measures.

The key ingredient is then Proposition 5.1, which shows that on the support of A, v a

function g related to the antiderivatives of the eigenvalues is minimized. That, in turn,

yields a characterization of the behavior of the wave speeds A,(u(•)) at places where the

solution is nonconstant. As it turns out. (u, v) is composed of two wave fans separated by

a constant state. Each wave fan is associated with one of the characteristic fields of (E)

and consists of either a single rarefaction. or a sin-gle shock, or an alternating sequence

of rarefactions and shocks such that each shock adjacent to a rarefaction on one side is a

contact on that side. At shocks the Rankiie-Hugoniot and a weak form of the Lax shock

conditions are satisfied.

In Section 6, we fix a point ,c of discontinuity, with left and right limits (u(ý-), v(ý-)),

(u(c+), v(ý+)), and discuss the relation between self-similar limits and traveling wave

solutions for the viscous equations. We refer to [Tu 2 , D-2 , Fa, Tz] for investigations of

this issue in other contexts. It turns out that (1,1, v,,) have the internal structure of a

traveling wave solution of (VE), and that discontinuities emerging via self-similar viscous

limits satisfy for u(ý-) < u(ý+) and ý > 0

[a(U) - O(U(-)) 1 2 [U - UV-) 0, U E (u(ý-), u(ý+) (1.6)

(_ 0 for ý < 0). Moreover, if (1.6) holds as a strict inequality there is a single shock

profile connecting u(ý-) to u(ý+). On the other hand, if (1.6) holds as an equality at a

finite number of points ui, j = 1, ... , m, there will be a chain of traveling waves connecting

consecutively u(ý-) to ul, each of the points uj to the next, and u,, to u(ý+). This

relation between self-similar limits and traveling waves was conjectured by Tupciev [Tu 2].

Condition (1.6) can be motivated by an analysis of traveling waves and was identified by

Wendroff [W] as a criterion to single out admissible shocks for the equations of elasticity.
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2. CONNECTING TRAJECTORIES I - A PRIORI ESTIMATES

Consider the nonlinear boundary-value problem (P,)

-cu, - V' = 0

-C' - a(u)' = z(k((2.1)

U(±0) = u± , V(±oo) = V±, (2.2)

on -oo < C < 00 for c > 0 fixed. Our objective is to construct solutions (u(ý), v(c)) of

(Ps), that is trajectories connecting the end states (u-, v-) and (u+, v+). Both cases of

longitudinal and shearing motions are studied simultaneously. For longitudinal motions

the strain u is expected to turn out positive, a(it) is a C2 -function on (0, oc) that satisfies

(H) and (H)L, while k(u) = 1. For shearing motions u takes values on the reals, a(u) is

a C-function on (-oc.oo) that satisfies (H), (H), and k(u) = 1. The data u±, v± are

arbitrary for shearing motions, but satisfy u+, L_ > 0 for longitudinal motions.

2.1 Definition and Regularity Properties for Solutions.

The system of nonautonomous differential equations (2.1) is singular at • = 0. Before

outlining a construction scheme it is expedient to clarify the meaning and to analyze the

regularity of solutions. Consider the weak form of (2.1)

J (Cu + v)i'd( + f u~d( = 0 (2.3)

J((v + o(u))O/dC + J: k(u)tt,Lý,d( + J vikd( = 0, (2.4)

where v, 4' E C'(IR), continuously differentiable functions with compact support.

Definition. The pair (u(C), v(,)) with u E Lo0,(IR), v E H' c(IR), a(u) E L20C(IR),

k(u)v' E L2,0 (IR) is a solution of (P,) if (u,v) satisfy (2.3- 2.4), for any W, , E CG(IR),

and lim u(ý) = u±, lim v(ý) = v±.

Lemma 2.1. Let (u, v) be a solution of (P,). Then

(i) Cu, v are continuous on IR, v' continuous on IR - {0}

(ii) lir (a(u(ý)) + ck(u(ý))v'(W)) ezist and are equal
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(iii) The functions (u, v) satisfy

[,u()+v()] ju()d = 0 (2.5)

b Lb
[tv(ý) + a(u(C)) + Ek(u(ý))v'(ý)] -_ V()d( = 0 (2.6)

for any a, b E IR. In (2.5), (2.6) the appropriate right or left limits are understood

whenever a or b are equal to 0.

Proof. It follows from (2.3) that v, ýu E H'OC(IR) and thus v, ýu are continuous. More-

over. u E L~o.(CR), ýu E H'oc(IR) are easily seen to imply •,(•) - 0 as 0.

Fix now a, b E IR with a. b # 0, a < b and consider (2.4) with

1
0 -oc < <a--

n
1 1

n[-(a - _1 a - 1 _< a
n n

• • , ( ,• ) = 1a < < b

-[-(b + )] b _<•< b + -1
nn

1
0 b+-< <+0o.

n

As 0,,, ' C'(IR) it cannot be directly used as a test function. However, using approximation

by C' functions, (2.4) can be easily extended to hold for 0,,, and yields

n j__ ((v + a(u) + sk(u)v')d( - n j (4> + a(u) + ek(,,)v')dc
I6+

+ fb+• n'V•,,d(, = O0.+1._

Letting n --+ o shows that (2.6) holds for a.e. a, b E IR. Since v, ýu are continuous, v'

is also continuous on 1R - {0} and (2.6) holds for any a < b with a b # 0. Letting now

a -+ 0- or b --* 0+ establishes (ii). A similar argument shows (2.5). I

In summary, it follows from (2.5) and (2.6) that u E C'(IR - {O1), v E C2 (IR - {0})

satisfy the differential equations

(2.7)
-- u(i)' - (k(u) v')'
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for 0 # 0, and the jump relations

v(0-) = V(0+)

,(u(o-)) + .k(u(O-))v'(0-) = a(,,(o+)) + ek(u(O+))v'(o+). (2.8)

Next we analyze the behavior of (u, v) in the neighborhood of • = 0 and ± = -00.

From (2.7) we obtain

c(k(u)v')' + a ' U'V 0, 0, (2.9)

which in turn yields

' [k(t )c'exp {1/u( 0 )d,,j(=0,

and upon integrating

k(i(o ))'( ) x - -(2 (a( "(0) d( >0

V(= k( u(+ ))v'(t_) i 2 (".(2.10)
k(u(n)) exp f' -(u(I)) ,C <0S_ k(u(())

S(2.11)

where a-, o+ are any constnts with a- < 0 and ca+ > 0. The above formulas suggest

that the behavior of u', u' near { = 0 and ± ±-o is determined by the behavior of u(ý)

as --+ 0 and as ý --+ ±+o, respectively.

To explore this point further, assume that u is bounded

sup Mu() _ M (M)s

in the case of shearing motions, or that u is bounded from above and bounded away from

zero from below

0< 6_< t,(ý)_' ,5 . E(-00, 0) (MA)L

in the case of longitudinal motions. Then hypothesis (H) and the form of k(u) imply

0 < ko _< k(u(ý)) < Ko (2.12)

7
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0 < ao _< a.(u(ý)) < Ao , (2.13)

where the constants ko, A70 , ao and Ao depend on 6 and Ml.

Lemma 2.2. Let (u, v) be a solution of (2.7) that satisfies (M)s for shearing motions or

(M)L for longitudinal motions, so that (2.12) and (2.13) hold. Let A± = =V/'o, A± =

+7Ao. Then for 0 < < ct+ < A+

.2 _ ,
2

for A+ < ak+ <

/)j < •,,,/,, )),(,+ )1., ,Xp { - 2~- } (2.15)

for .A -_ on < a <K 0

,2 _,2

1 i\ K 0/(2.16)

and for < a- < A-

- ))j)t"(oa'(e,( {)-7 ((1)2 -xp)- } .. (2.17)

Proof. We show (2.14) and (2.15); the proof of (2.16) and (2.17) is similar.

Fix 0 < { < a+ < A+. Then (2.12). (2.13) imply for 0 < < a+

<__<____,\2 22 <o0

and thus
(2'} A2 

-2

.(114)) +-a +d

Hence, (2.14) follows froi' (2.10).

Let now 0 < A+ < a+ < be fixed and observe that for • > a+

2- (u(•)) > > A a+ -2A + > 0.

S +



Hence

exp {5 1 ~ -((~c exp { +~A~ f (d(
a+ - A

= exp { - A + 2

and (2.15) follows from (2.10). *

Lemma 2.2 implies that solutions (u. e) of ('P) with u bounded have the following

properties:

( i ) It.'( Sc )l - 0 .1 ,1'( ý ) )l - 0 a s -. __

(i, c'(.) = 0(It' ), I'(f) = 0,, C ) as c 0-. for some a > 0.

Thlrfoe. r '" 0+ ) = "( 0-) = 0 and the right and left limits u( 0-+-), i,(O-) exist and are

finite. By (2.S) and (H),

q( (1-)) = a(1(0+)) , u(0-) = u(O+), (2.1S)

and thus U E C(I) n C'(IR - {0}), while u E C'(IR) n C 2 (lR - {0}).

2.2 The Construction Scheme.

Our approach for constructing solutions of (P.) is to apply the Leray-Schauder de-

gree theory (eg. Rabinowitz [R]) to a deformation of maps, that preserves the regularity

structure outlincd in the preceding section. Degree theory has been a successful tool for

establishing connecting trajectories in problems involving self-similar viscous limits (Dafer-

mos [Di], Slemrod [S], Slemrod and Tzavaras [STz]). Due to the absence of diffusion in

(2.1), a candidate scheme for constructing trajectories should capture the interplay be-

tween the "hyperbolic" and "parabolic" effects in system (2.1) and be thus different in

spirit than the "parabolic" based schemes used in [Dii, [S] or [STz].

Let X = C 0(-co, oo) be the space of bounded, continuous functions. X equipped

with the norm [1a[= sup Ilt(ý)i is a Banach space. Consider the sets
-oc<f<oc

6
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in the case of longitudinal motions,

11 = {, E X : Iu,(',j < M + 1 , -oo < ý < ool (2.19)s

in the case of shearing motions, with 6, .M1 > 0 constants to be determined later. In either

case Q2 is a bounded open set in X. For y E [0, 1, E > 0 fixed and U E n consider

--•L' - V= 0
00o < ý < oc (2.20)

u(-+ ) = u+(j,) :=.. -I- + t(tt+ - _

(2.21)u;(-,) = ,+,):= u, +•(",+ - ,.

Note that for )ongitIdinfal motions It+. it- > 0 and thus u..,.(,), _-( p.) > 0 for p E [0. 1].

Let F [. - .0 1 x A 1Q -X , the iIap carryinlig (it. U) to the first component t,, of the

sohlri( (,. (til ) )f (2.20 - 2.21). Thli' sohltions of ('P:-) may be visualized as fixed p)oints

of F 1. -) in Q!. In the following sc(:tion we show that F is well defined and apply the

Leray-Schl;uider d(egre( theory to the hoinotopy I - F(/t. -). Towards that it is necessary

to estimate the solutions of It - F(/L, I) = 0, it E [0, 11; equivalently, to establish a-priori

estimates for solutions of (2.1), (2.21). These are pursued next.

2.3. A-priori Estimates.

For the remainder of the section, let (u(,). u(,5)) be a solution of (2.1) on (-oc, oo),

with smoothness i E C(ll") fl C'(IR - {0}), v E C1 (IR) n C2 (IR - {0}). satisfying the

boundary conditions (2.21) for some pt E [0, 11. For longitudinal motions it is also assumed

that u(C) > 0 on (-oc,ol). In the sequel C. will stand for a generic constant depending

on u±. v± and E but independent of p, while C will denote such constants whenever they

are independent of .

From (2.10) we see that:

(i) If v'(ý 0 ) = 0 for somc ýo E (0, oo) then v'(ý) = 0 on (0, oo).

(ii) If v'(ý 0 ) = 0 for some ýo E (-oo,0) then v'(f) = 0 on (-o0,0).

Thus on each of the segments (-oc, 0) and (0. x ) either t is strictly monotone or it is a

constant state. By (2.11) the same property characterizes u. Consequently we can classify

the possible shapes of (i, v) into fivc distinct categories:

10



CI: u is increasing on (-oo, oo), v is increasing on (-oo, 0) and decreasing on (0, co).

C2 : u is decreasing on (-o, oc), v is decreasing on (-oc, 0) and increasing on (0, cc).

C3 : u is increasing on (-cc, 0) and decreasing on (0, oo), v is increasing on (-cc, cc).

C4 : u is decreasing on (-co, 0) and increasing on (0, cc), v is decreasing on (-cc, cc).

CS: (u, v) has the behavior depicted in C, - C4 in one of the segments (-cc, 0) or (0, 00)

and is constant on the other.

The classification of shapes is the main ingredient leading to LO- estimates for solu-

tions of the boundary value problems (2.1), (2.21). Such estimates are obvious for solutions

of class Cs, so we concentrate on the other cases.

Lemma 2.3. For solutions (u, v) of class C1 or C2 :

min{i t_., t+} < u(c) < max{u-, u+} , (2.22)

[c(1)1 <5 C, (2.23)

for -co < ý < oc. The constant C is independent of p and

Proof. We present the proof for solutions of class C1 , namely u is increasing from

u_(M) to u+(p) and v is increasing on (-o,0) and decreasing on (0, co). Then (2.22)

is clear, and to show (2.23) it suffices to bound v(0) from above.

Since (u, v) is a solution of (2.7) satisfying (AI)s or (M)L, Lemma 2.2 implies v'(0) = 0

and v'(ý) -- 0 as -- ±oc. Integrating (2.1)2 over (0, o) we obtain

- jv'(()d, = u(u+(G)) - o(,t(O)) _< a(u+) - a(u(O))

and thus

v(1) = v+(ju) - j v'(C)d( < v+(ji) - 1 v'(()d(

< max{,v,, V+} + u(u+) - ,r(U(O))

Finally, from (2.1)1,

v(O) v v(1) + j u'(¢)d(

SmaX(V..., V+} + o(u+) - o(u(o)) + U(1) - u(o)

11



is bounded independently of p and e. 3

Lemma 2.4. For solutions (u, v) of class C3 or C4 ,

min{v_, v+} I< v(ý) _< max{v_,v+} (2.24)

for -oo < ý < oo. Moreover:

(i) Under hypotheses (H) and (H).: for shearing motions

Iz'(ý)1 < C (2.25)s

fr-" -0c < ý < oc, where C is independent of p and r.

(ii) Under hypotheses (H) and (H)L for longitudinal motions

0<6• u(c) K C (2 .2 5 )L

for -oc < ý < cc. with 6 and C po.sitive constants independent of p and

Proof. First we consider solutions (u, v') of class C3 . They satisfy on (-cc, oo)

v(,) < vW() < v+(p)
(2.26)

min{,,_(p,),u+(y)} _< u(ý) __ u(O)

and, in view of (2.21), it suffices to show that u(0) is bounded from above.

Integrating (2.1), over (0, oo) we obtain

- (u'(4)d¢ = v+(,) - v(O) < v+ - ,_

In turn, this yields for any • > 0 J00
u(W) = u+(u)- u'-C)d(

< u+(,) - Cu j '(()dý (2.27)

< max{u_-,u+} + -(v+ -V_)

Let 8, 0 be two points with 0 < ý < 0. Integrating (2.1)2 over (0,O) leads to

a(u(ý)) + ek(u(ý))v'(ý) = a(u(O)) + zk(u(O))v'(O) + j (v'(c)d,. (2.2.)

12



Choose e E [1,2] such that v'(9) = v(2) - v(1) < v+ - v-_. Then

a(u(G)) + ek(u(O)),'(o) + j (v'(()d(

_< a(u(()) + e(v+ - v_)k(u(e)) + 2(v+ - v-)

<max (o(q) + _(v+ - v-)k~q)) + 2(v+ - v-)u+(,p)<.q<_U(1)

in conjunction with (2.27) and (2.28), implies that

c k(u(ý)) v'(,) + a(u(•,)) • A, for 0 < 1, (2.29)

with A a constant independent of y and E. For solutions of class C3 it is v' > 0 on (0, oc)

and (2.29) gives as • -. 0

a(t,(0)) <A A . (2.30)

Under hypotheses (H)s or (H)L, (2.30) implies that u(0) is bounded from above and

completes the proof of (2.25).

When (H)s or (H)L are violated a(u) increases monotonically to a limiting finite

value ao, as u --- oo. If ao, > A the above argument still leads to an c-independent bound

for u(0) and provides (2.25) for restricted classes of data. However, if ao, _< A the estimate

disintegrates.

Next, we turn to solutions of class C4. For shearing motions the bound (2.25)s follows

from a similar argument. So consider the case of longitudinal motions for (u, v) of class

C4. Note that

0 <um:= minfu_-,u+} :_U±(lu)7<_ma-c{u_,u+}=l V,_ > ,+ ,

and that

(2.31)

on (-oo, oo). It suffices to show that u(0) is bounded from below away from zero.

Observe first that from (2.1),

j (U'(()d( = v(0) - v+(p) <v- -

13



Choose n sufficiently large so that I(v_,- - v+) _< ½u. Then for _ n

UM = u+b,) - u'(C)d(

10 (2.32)> u+(Y) - - (u'(()d( _ _

Next, choose 0 E [n, n + 1] such that v'(O) = v(n + 1)- v(n) _ -(v- - v+). Integrating

(2.1)2 over (ý, 0) with 0 < _ n < 0 < n + 1 and using (2.32), we obtain

ek.(u,()).v'(•) + u(,,(•))

= •(,,(0)) + •k.(u(0))v'(0) + 0'¢d

('2.33)

_ o(,(9)) - r(u,- - v+)k(,,(O)) + (n + 1)Q(V() - V(3))

> mnil a(,) - ( - v+)k(q)) - (n + 1)(u - v+) =:-B

with B a (possibly ncgatiwc) constant independent of M and i:. Since v' < 0 on (0,o),

(2.33) in conjunction with (H)L imply

u(O) > a-'(-B) > -oo, (2.34)

and (2 .2 5 )L follows from (2.31), (2.34). *
The restrictions on shapes of solutions together with the L,-estimates in Lemmas

2.3 and 2.4 imply that families {(L.., v,)}.>o of solutions to (P..) are of uniformly bounded

variation.

Corollary 2.5. Let {(ue, VC)le>o be a family of solutions to the boundary-value problem

(P,) corresponding to fixed data (u±,v±). If a(u) satisfies (H) and (H)s or (H)L, there

exist constants C and 6 depending on the data but independent of c such that

I,,e(O)1 -< C, Ijv.()t < C, on (-oo, oo) (2.35)s

for shearing motion.,

0 < 6 < u,(ý) <C , Iv'(ý)I < C, on (-oo, oo) (2.35)L
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for longitudinal motions, and

TV(_-,,O) ug< C, TV(_o..0.) v< C (2.36)

in both cases.

3. CONNECTING TRAJECTORIES II- EXISTENCE

In this section we study the map F: [0, 1] x !: --+ X that carries (p, U) E [0, 1] x n to

the first component u,, of the solution (u•,, 1 ,) to (2.20), (2.21). n? is defined by (2 .19 )L

for longitudinal motions or (2 .19)s for shearing motions; the constants b and .1f in

the definition of Q are chosen as the minima and maxima, respectively, of the bounds in

Lemmas 2.3 and 2.4. Our objectives are: (a) to show .F is well defined, and (b) to estaiish

existence of solutions for the equation u - F(It. u) = 0, p E [0, 1].

Let T : Q , X. S : - X be the maps that carry U E f to the solution (t. v) =

(T(U). S(U)) of thie boundary value problem (2.20) subject to boundary data

u(-0) = 0. U(+oC) = U+ - u_ ; (-0) = 0, v(+0) = V+ - v_

Then (u- + MT(U), v- + pS([')) satisfy (2.20), (2.21) and thus we may express the map

.F in the form

17(p, U) = u_ + yT(U) .

3.1. The Linearized Problem

Properties of T, S derive from analysis of the linearized problem

-cu' - V' = 0
- 00 < C < 00 (3.1)

-v' - a(C)u' =(k(ý)v')'

subject to data
u(-o) = 0, u(+oo) = U+ - u_

(3.2)

v(-oc) = 0, v(+o) = V+ - v_

and with a(C), k(C) continuous functions satisfying on (-oo, oo)

0 < ao < a(C) < Ao
(3.3)0 < k0 < k(•) _< Ko.

15



The solution (u, v) of (3.1), (3.2) can be calculated explicitly. Observe that v' satisfies

the differential equation

+ ý( )•')V , =0, ý540

and thus
S •S2 --a(s)-

=, {) c e,,{ k d} -+ 4WI~ , C > 0 (3.4)

' 1 f4S 2 - a(s)( .""ck- ep s -k s ) =61 c-_I_(ý), •<0

1 , < ] -• r+(,,,) , > 0
"'(L11-<'(')= [ 1 (3.5)

-c_- _•) < o

with C+, C_ arbitrary Constants.

Lemmna 3.1. r+, I- haV: the: following behavior. There exist constants a, 18, -y, 6 and

C. dcprnding on au, Au, kt1, Ko, with C. al.o depending on S, S-ch that

w2,1 _< I±(o, < C,lol? 0 < Iw1<_1 (3.6)

- I+) < C~e- , I > 1. (3.7)

Proof. By virtue of (3.3), for 0 < < _ 1
skj- - a(s)) s-s

<1 ao< •- + Ten•

while for > Ž 1

SS2 _ a(s) dst 5 d+ !•G(s)d
skk(s) Jsk(s)1 • A

(ý2-+ L( -1 !S + ,• - + M

for some /3 < and Al > 0. These bounds together with (3.4) show one part of

(3.6), (3.7). Thc rcst follows by similar argumcnts. 3
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It follows from (3.6), (3.7) that u', v' are integrable on (-00, oo) and thus (u, v) can

be calculated by the formulas

(U+- U_)+ C+ d(f >0

u() it (3.8)

c-d¢( C<0

(V+ -V_) - C+ ,+C d C > 0(39
v = (3.9)

1 0.

The constants c+, c- are evaluated by requiring continuity of (u. v) across C 0. That

implies

c+ /dC - c- -J=d( = -(it+ - u-)
fo c --00 (3.10)

C+ 10 I+(,dC + c- j _()dC = V+ - V- .

As a consequence of (3.6), (3.7) the determinant A of the linear system (3.10) is bounded

from below by a positive constant and thus (3.10) admits a unique solution (c+, c-).

We turn now to estimate the solution (u, v) defined by (3.8), (3.9). Let 14 stand for

a generic constant depending on ao, Ao, ko, Ko, e and u±, v±. Then (3.6), (3.7), (3.8)

and (3.9) imply

1c+ I + Ic-l _< 1 (3.11)

Iu()j) + Iv(ý)l -• , , ý E (-0,00) (3.12)

WWI•) + WI'() _< K'e,•f ICI1 >! 1 (3.13)

WI•,() <5 iK', WWI•) <5 Kii~l-1 , 0 < ICI <5 1 . (3.14)

Therefore

ivIIo'1 ,. _< h',. IlU'Ill,, ___h

withp, = oo if e < a =91 and p, < 1/(1- ) if a < c. We conclude that v is

Lipschitz, and

Iu(() - u(O)l 5 IIu'IIL,. I( - 01('-) (3.15)
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u is H61der continuous with exponent 1 - < 2 if a < e and exponent 1 (Lipschitz) if

e < a. Note that the regularity improves as e decreases.

3.2. Existence of Solutions for (P,)

We state the main theorem of this section establishing existence of solutions for (P,):

Theorem 3.2. Let e > 0 be fixed and assume that a(u) satisfies (H) and (H)s in the

case of shearing motions, or (H) and (H)L in the case of longitudinal motions. Then

there exists a solution (u(ý), L(c)) of the boundary value problem (P,) on (-oc, oc). For

longitudinal motions the solution satisfies u(ý) > 0 on (-cc, cc).

Proof. Let T, S : 2 -- X be the maps carrying U E Q to the solution (T(U),S(U))

of (2.20), (3.2). T, S are properly defined by (3.8). (3.9) and (3.10), where r± are given

by (3.4) with k(,) = k(U(c)), a(c) = a(U(ý)). Define the map F : [0, 1] x - X by

.F(ft. u) = u- + IiT(U). If u is a solution of u = u- + T(u) in Q and we set v = S(u) then

(i,, v) is a solution of (Ps.) with u E Qt. We will apply the Leray-Schauder degree theory

(Rabinowitz [R, Ch V]) to solve

u - pT(u) = u-, p E [0,1]. (3.16)

First we show T: f2 X is compact. This follows from (i), (ii) below.

(i) T(fl) is precompact in X.

Consider a sequence {U,,} C n and let u,, = T(U,,). Estimates (3.12), (3.15) and (3.14)

imply that the sequence of functions {I,, } are uniformly bounded and uniformly equicon-

tinuous on [-L, L] for any L > 1. Also,

lu.(O < 'e ,2 < _1
A 2  -(3.17)

lu.(O - (u+ - u-)l • Gee _< , > 1,

with C, independent of n. It follows from the Ascoli-Arzela theorem and a diagonal

argument that there is a subsequence {u,k } and a continuous function u such that u,,, -+ U

uniformly on compact subsets of the reals. But then (3.17) implies that u,, -- u in X.

(ii) T: fl -+ X is continuous.
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Let {U,} C 1 be a sequence such that U,, --+ U in X and set u,, = T(U,). Then u,., U.

are related by

S= (u+ - u_) + c 0j"{•d(
ft (3.18)

1 W1 f s2 - a(Un(s)).d
= [ exp sk(Ua(s))

for ý > 0 and corresponding formulas for ý < 0; cn., c" solve (3.10). By part (i) there is

a subsequence {u,,, } and v E X such that u,,, - v in X. Using (3.6), (3.7) we pass to

the limit in (3.10), (3.1S) along the subsequence {Unj and obtain v = T(U). Since any

limiting point of {u,} in X is of the form v = T(U) we deduce T(Un) --. T(LT) in X.

The map jtT : [0. 11 X X is compact, thus the Leray-Schauder degree of I -yT

is well defined. By Lemmas 2.3. 2.4 and the definition of 9 any solution u of (3.16) lies in

the interior of Q. Therefore

d(1- ITP., .)-= d(r, Q,._) = 1, p E [0,1],

and (3.16) admits at least one solution for each y E [0, 1]. 3

4. SOLUTION OF THE RIEMANN PROBLEM

For the remainder of the article we study the E - 0 limit of solutions to (P.). Let

{(u... vr)'.>o be a family of such solutions, corresponding to fixed boundary data (u±, v±),

and having the property

(u.,v,) satisfy the uniform bounds (2.35), (2.36) for any e > 0. (A)

Helly's selection principle implies there exists a subsequence of the original family, denoted

again by {(u.,v,)} with e - 0, and a pair of functions (u,v) of bounded variation such

that

u ---* u(ý) , v,(•) v(•), pointwise on (-oo, oo) . (4.1)

Our objectives arc to show (u, v) is a solution of the Ricmann problem and to investigate

its structure.

Concerning Hypothesis (A) we remark: First, Corollary 2.5 guarantees (A) for families

corresponding to any data provided a(u) satisfies (H) and (H)L or (H)s. Although (A)
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is not expected to be in general valid when (H)s or (H)L are violated, Lemmas 2.3 and

2.4 suggest (A) still hold,, ander relaxed conditions on a(u) provided the data (u±, v±) are

appropriately restricted. To account for such cases, we work under the framework of (A)

for functions a(u) that satisfy (H). We refer to Dafermos and DiPerna [DD], Keyfitz and

Kranzer [KKr] for studies of ¢ - 0 limits in the absence of uniform bounds; see Antman

[A] for a discussion of the problem of infinite compression in a different context.

Along families {(u,,v,)} satisfying (A), the estimates (2.12), (2.13) also hold and the

wave speeds Al(u) = -v'•' 1 ) , A-(u) = +•- -u) of the hyperbolic system (E) are

bounded and separated

A- < Ai(u(,()) < ,\A- < 0 < A+ -5 A 2,(ui(f)) < A+ (4.2)

by constants A± = ±v/•-, A= = ±v+ . independent of s. First. we show that (it. c) is a

solution of the Riemann problem.

Theorem 4.1. Suppose o((u) satisfies (H) and let {(ut, v,)}1r>o be a family of solutions

of (P•) corresponding to data (u±,v±) and satisfying (A). There exists a subsequence

{(u,,,v,,)} with e, -- 0 and a bounded function (u,v) of bounded variation such that

u, -- u, v., - v pointwise on the reals. The limit (u,v) satisfies (1.2) in the sense of

measures and

(u(M), v()) = (,(0), v(0)) A,- < ý < A,+ (4.3)

11(u+,v+) ý > A+.

Proof. Let {(u,,v,)} be a convergent subsequence as in (4.1). Integrating (2.1)2 over

(0, ý) and using vi(0) = 0 yields

c k (u,, ()) '(W)= 1[ v,(')d, - ýv.(ý) + o(u.(0)) - a(u.(ý))

and, in view of (A),

k(u,(ý))Lv',()I < -(IfI + 1), E E (-o, oo). (4.4)
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Lemma 2.2, together with (4.4), implies the following bounds for (u', v'): Fix first

any points a < 0 < b with [a,b] C (A-,A+). We see from (2.14), (2.16) and (4.4) that

hos.( \) o< j cb r (4 .5 )

where e de tht distances 0 a - A -f1, 1 b -co+p and degenerates as these distances go

to zero. In a similar fashion for any (-o' , ai C (-4. , A) and [b, x) C (A+, oo)

V(u, a (4.6)
- exp _ b2- 1)1, J>b

(.t+.h ), and that the limiting (a. v) satisfies (4.3).

Observe nex,-t that if

,71,t, v) V .," + a(r)dr, q(u, v) = -vo'(u) (4.7)

then (2.1) implies

d d
d v17(1,. ,C) + d q(,,, v') = -v,,(k(u,,)v/)'. (4.8)

Intcgrating (4.8) ovcr any interval [a, b]

j7(bL,.,v.}d( + e. k(u,.)(v,') 2-do

b (4.9)

- ({,,(tq, yE) - q(tq, v,) + evk(uc)z4)

and using (A) and (4.4), we obtain

b k(u,) (,)2 do < C(lal + Ibi + 1). (4.10)

Let now p, 4' E C'(IR) be test functions and suppose that supp V C [a, b]. We

integrate (2.1) against ¢',V rcspectively and use (4.1) and the estimate

f k ( , ,. ) v " ' d 4 : < b k ( .) ( V " ) 2 (dj k ( u e ) V '2 d 4 )/

<C /2ClaI + IbI + 1)(bVI2do)
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to conclude upon taking e --* 0 that (u, v) satisfy

L u((ik)' + vb'dC = 0

0 v(v)' + a= 0(4.11)
+o'( uX)'d(f 0.

As (u, v) are functions of bounded variation (1.2) is satisfied in the sense of distributions

and in the sense of measures. I

The function

(u(-),t.() , (x, t) E (-c0, 0c) x (0, 00) (4.12)

is a weak solution of the Riemann problem for (E). Indeed, (1.1) follows from (4.3), and

that (4.12) is a weak solution of (E) can be established by an argument similar to the

one leading to (4.11). In fact. a solution of the form (4.12) is a weak solution of (E) in

(-c. cc) x (0, oc) if and only if (, c). )) satisfies (4.11) (Dafermos (D3 1). Theoremn 4.1

in conjunction with Corollary 2.3 lead to an existence theorem for the Riemann problem.

Theorem 4.2. Assume that a(U) satisfies (H) and (H)L or (H)s. Given any (u_-,v-),

(u+.v+) (with u-, u+ > 0 in the case of longitudinal motions), there exists a pair of

functions of bounded variation (u(d),,(,)) efined on (-oc,oo) (with u(ý) > 6 > 0 in the

case of longitudinal motions), such that (u(1), V(U)) is a weak solution of the Riemann

problem for (E).

Since (u, v) are of bounded variation, their domain can be decomposed into two disjoint

subsets, (-oo, oo) = C U S, such that on C the function (u, v) is continuous while on S it

undergoes jump discontinuities. S C [A'-, A-] U [A+, A+] is at most countable and the right

and left limits of (u, v) exist at any C E S. Moreover, u and v inherit the monotonicity

properties of u, and v, listed in C1 - C5 . We show next that at points of S the Rankine-

Hugoniot conditions are satisfied.

Lemma 4.3. At any ý E S

- z [u(W+) - uu-)] - [v(+) - v(V-)] = 0 (4.13)

- v(ý-)I - (u(u(V+)) - o(u(ý-)] = 0.
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Proof. This is a consequence of the fact that (u, v) of bounded variation satisfies (4.11).

We outline a proof, which is in the spirit of self-similar viscous limits.

The shapes of (us, v,) together with the L'-bounds imply

ik4I dý+L 1' d( Id C . (4.14)

The solutions (us, v) of (P,) satisfy (2.5 -2.6). For ý E S fixed and any 6 > 0 these imply

jf+6 Ou,(0) + v.(0) dO - ;+ j ,,.(C) d(dO = 6v,(0)

J J
O,,(O) + a~u.(()) d9 + e k(u,(O))u,(O) dO (4.13)

- j j vý(() d(dO = 6a(u.(O)

Take first • 0, using (4.1), (A), (2.12) and (4.14), and then divide by 6 and take 6 - 0+

to obtain

%%(•+) + ,(•+) - u( 0)d( = v(0) (4.16)

ýv(W+) + G(,(ý+)) - j v(C)d( = a(,,(0))

In a similar manner we establish

•,(•-) + v(ý-) - j u(()d( = v(0)

•,(V-) + a(u(V-)) - j v(()dý = a(,,(0))

and (4.13) follows from a comparison of (4.16) and (4.17). 1

5. STRUCTURE OF SOLUTIONS OF THE RIEMANN PROBLEM

Let { (u, v,)} be a sequence of solutions of (P,) as in Theorem 4.1 converging pointwise

to the function (u, v) as c -+ 0. We study next the structure of (u, v).

First certain representation formulas, expressing the derivatives (i'4, v') as averaging

processes, are derived. Let

c ý() - o',(uW()) Au" (u, A A(u,() (5.1)
C, V) = .k(u,(4)) = k(u,(4))

23



g'(• W + c>0(5.2)

SC'(C)dC, < 0

where a. < 0 < a+ any fixed constants. Integrating (2.10) we obtain

v+ v- (O) = k u,(a+'))- v'(1+) kou00)) e- .- (C)d(

k(u..())

v '(o) - v -= k (U _(a ) '(Q-) 0. _ k(u1(ý))

In turn, using (2.10) and (2.11), we obtain a representation formula for v'e
I -

( v - v ( O ) ) k 1 u , ' ,••) - ' '
fV+ , ,, 1 .,) e '> 0

'" (5-3)k(, d~l,( e ,()

(L'.(O) ) 014 e < 0

S- 
0)dk(,(.))e

and a corresponding formula for i'0

v(O))- >l0

u'() = f,'fO _ef (5.4)

T U. j ))e -
1 g(m

-(u,(0)- 0 !.____ __ _<_0I -o ku() e-•.¢d ' -q M 0.

Note that g, depends on the solution (t., vk).

It is instructive to use the correspondence between functions of bounded variation

and finite Borel measures on the reals ( Folland [F, Sec 3.5J). Let (Ac, v.) be the measures

associated with (u', v') defined by

< A,x, > =[¢•,'()•

J ((5.5)<,, > =j••,'()•

where &, ýP E C,(IR) continuous functions with compact support. Then (2.36), (4.1) and

(4.14) imply there exist finite (signed) Borel-Stieltjes measures (A, v) such that

J ?k ud•c--. du=:<A,VI>, for ikEQ(R),
(5.6)

J v'd V--. d -=:< v, p > , for ( E C,(IR),
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that is A, -" A, v, - v in the weak-* topology of measures (Folland [F , Sec 7.3]). Note

that A is generated by the right continuous function (u(ý+) - u-), while v is generated

by (v(ý+) - v-). It follows from (2.11), (5.3), (5.4), (4.5) and (4.6) that (A, v) enjoy the

following properties :

(i) supp A = supp v c [A+, A-] U [A+, A.].

(ii) ý 0 supp A if and only if there is an open interval 1 9 ý such that u is constant on I.

(iii) ý 0 supp v if and only if there is an open interval 1 ý • such that v is constant on I.

(iv) S C supp A = supp v.

In the next proposition we establish an important property of the measures A and v,

that incorporates admissibility restrictions induced by the self-similar viscosity. To this

end. it is convenient to work with the quantity

I> 0

•,.•(•) = fKo de;J(•)
S f k(,,() (5.7)

Note that, since {(y,} are uniformly bounded in L'(aR), along a further subsequence

< It,,P >= f p, ( )p( )d{ -+ < p,• >, for p E C,(Ia), (5.8)

and that except for the trivial cases v+ = v(O) or v- = v(O) it is supp I = supp A = supp V.

Along the convergent sequence (u., v,) -+ (u, v), the functions c•, g, converge pointwise

for 54 0

cc(): k(,(+)) A(u))) A2 (U())) (5.9)

ge(• W -1(W):= +C~(, (5.10)c(C)d( , ' < 0

We show that points in the support of it are global minima for the function g.

Proposition 5.1. Let ý E suppIL.

(i) If/ E supp ft n (-oo,0) then g(,) ? g(f) for C E (-o0,0).
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(ii) If ý E supp 1 fl (0, oo) then g(C) Ž_ g(ý) for ( E (0, oo).

Proof. We show (ii); the proof of (i) is similar.

Consider the sequence {g,} defined in (5.2). In view of (5.1) and (2.35) on any compact

[a, b] C (0, oo) {g, I is uniformly bounded and equicontinuous. The Ascoli-Arzela theorem

implies a subsequence {g,, } converges uniformly. Since the whole sequence converges

pointwise to g, we conclude

g, -- g uniformly on any [a, b] C (0,oo)). (5.11)

Suppose now that for some ý E (0, oo) the conclusion of (ii) is violated. Since g is

continuous on (0, oc), there exists some a > 0 such that the set

A= {( E(0,oo) : g(,)-g(ý) <-a <01 (5.12)

has positive Lebesgue measure m(A). WVe will show:

Claim. If m(A) > 0 there exists an open interval I 3 ý such that < A,ýp >= 0 for any

w E Cý(I).

The claim implies • • supp pL and proves (ii).

It remains to establish the claim. In view of (5.1), (4.2) and (2.12) there are positive

constants ml, M2 (independent of -) such that

m1  A
cc(s) < - - for 0<s<- -<

c((s) _nm2 (s-A+) for 2A+<s<0.

Letting e -- 0 we obtain

mI
c(s)<- - for 0<s<2+

s 2
c(s) Ž_ M2 (s - A+) for 2A+ <s <0

and, hence, for 0 < < 1+
2

J c(s)ds > -mi en+ 2( +oo, as 0+
2
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while for 2A+ <

j c(s)dsŽ>((0- A +)2 -A+2) --+ +oo, as ¢--+oo.

It follows that points ( near the boundary of (0, oo) violate the inequality in (5.12) and

thus A is contained in some compact interval [c, d] C (0, oo).

Fix now S > 0 such that

{' E (S - 6,ý + 6) implies Ig(ý) - g($')I < ck

Since A C [c, d] and because of (5.11), we can choose 60 > 0 such that

ý' E (ý - 6,, + 6), Z< 0o, ( E A imply g"(ý) - gý(') <

Now (5.7) and (2.12) yield for c' E r :(1 - 6, , + 6)

0< ) = k(,,,)) ex p{- 1(g,(() -g-('))} d(

1
< , exp{-. (g.(¢- 9 •(•'))}de (5.13)

K - .e 2
m(A)

Let cp E CQ(I). Then (5.S) and (5.13) imply

< >(•')s(•')dk' --> 0, as e --+ 0.

Hence, < y, V >= 0 for ý e CE(I), and the proof of the claim is complete. I

The minimization properties for g yield information on the structure of (u,v). In

particular, a weak form of the Lax shock conditions is induced at points of discontinuity.

Recall that A 1 (U) < 0 < A2(u) are the two wave speeds of the hyperbolic system (E).

Corollary 5.2. Let E, 'IR with <C'.

(a) If ý E C n lsup pj then
A=A,(u(C)) for C < 0, (5.14)
A=A2 (,(O)) for > 0.
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(b) If ý E S then (u,v) satisfies at ý the jump conditions (4.13) and the inequalities

)ti(u(ý+)) _ : . Ai(u(ý-)) for C < ,
(5.15)

A2,(,,(C+)) 5_ C A2 (u(",-)) for C > 0.

(c) If C, V' E supppn f(-o•,0) then Ai(u(ý+)) = C, Al(u(C'-)) = C' and for 9 E (C,C')

0 = A, (u(,)) if o E C,
(5.16)

A1(u,(9+)) = 9= Ai(i,(O-)) if 9 E S

If , V' E suppJ, r. ( ,) then. )2(u(,+)) = C, A2(u('-))=' and for 0 E (C,)

0 = A2 (zt(8)) if O E C,
(3.17)

A,\).((+)) 9 = A.,,(0(O-)) if 0 E S.

Proof. W\7 present the proof for c,, E (0. c). The function g in (5.10) is continuous and

satisfies g(f) - +.' as • 0+ or - +.I. Since c is of bounded variation

I "- _ = "- in j ( c(s•)ds = c(C±), (5.1S)

that is ±. exists and is continuous at points of C, while only the right and left derivatives

exist at points of S. Let C E supp /, n (0. oo), then

g(¢)>g(•) for 0 < ( <

and thus

CO•) >_ 0 , C(V-) _< o.

In turn, (5.9) and the separation properties of the wave speeds imply for C > 0

S- A2(U(0+)) _Ž 0 , C- A2 (u(C-)) 5 0, (5.19)

which leads to (5.14) for C E C and to (5.15) for ý E S.

It remains to shoW (c). Let C, ý' E supp p n (0, oo) with C < ý'. Then C, C' are both

global minima for g with g(C) = g(C'). We claim:

g(9) = g(C) for any 0 E (CC'). (5.20)
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If (5.20) is violated at some point, there exist a, b with • < a < b < C' such that

g(a)=g(b)=g(C) , g(O)>g(C) for a<O<b.

At the points a, b we have

A2 (u(a+)) < a < A2(u(a-))

A2(U(b+)) <5 b 5 A.'(U(b-)).

On the other hand it follows from Proposition 5.1 that the function (u(c), v(ý)) remains

constant on the interval (a, b) and thus A2 (u(a+)) = A2 (u(b-)). TL-d inequalities then

imply b < a which contradicts a < b; hence (5.20) follows. I

In summary, the region where (u, v) is nonconstant consists of two disjoint closed

intervals: I,\ = [a,, b1 ] C (-oc. 0) associated with the negative characteristic speed AI(u)

and xA2 = [a2 , b2] C (0, co) associated with the positive characteristic speed A2 (u). Each

of IL, or I, 2 could be empty or consist of just a single point. The function (u, v) takes

constant values on the complement of L, U I, 2 and has the properties listed in Corollary

5.2 at points of IA or I, 2 .

Let l j(u, v), 12(u, v) be the left eigenvectors and r1 (u, v), r 2 (u, v) the right eigenvectors

associated with the eigenvalues Al(u), A2 (u), respectively, for the hyperbolic system (E).

They are normalized to satisfy

l,(u, v) r1i(u,v) = bi.

The behavior of tlie wave speeds described in Corollary 5.2 together with a proposition

from [Tz, Proposition 4.6] give.

Proposition 5.3. Suppose that IA\ = [ak, bk] is a full interval, ak < bk, for k = 1 or 2.

(i) For each ý E [ak, bk) such that VAk(u(ý+)). r,(u(C+), v(ý+)) # 0 it is

h- o,h>O h + h-)v (5.21)
1

29k(((+) -((+)).
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(ii) For each ý E (ak,b i] such that VAk(u(ý-)). rk(u(ý-), v(ý-)) # 0 it i.s

lim 1[(u)p + h+) - (u ]),
h-O'h<O V \V I(5.22)

1 V( _) k(u(V- ), V(ý-)).w~k(U(ý-)). - k(U(ý-), ••)

As a consequence, (u, v) has right and left derivatives at any point ý that is not

an accumulation point of S. If such a point ý E C then (u, v) is Lipshitz there, and if,

in addition, it is an interior point of I,\ then (u, v) is differentiable there. Moreover, a

complete description of the structure of the two wave fans is obtained. We distinguish the

following cases:

(i) If ',\, consists of a single point then the solution is a shock wave satisfying the weak

form of the Lax shock conditions.

(ii) If IA, is a full interval of points in C the solution is a k-rarefaction wave (provided

that VA - rk 0 0 on I,%, which is anyway necessary for rarefactions).

(iii) In general I,, consists of an alternating sequence of k-rarefactions and shocks such

that each shock adjacent to a rarefaction from one side is a contact discontinuity on

that side.

The emerging picture is that typical of strictly hyperbolic but not genuinely nonlinear

systems. In the absence of genuine nonlinearity, the Lax shock conditions are not sufficient

to single out the admissible shocks and have to be strengthened (Wendroff [W], Liu [L]).

In our setup, additional restrictions result from the analysis in the following section.

6. SELF-SIMILAR VISCOUS LIMITS AND TRAVELING WAVES

In this section we discuss the relation between self-similar viscous limits and traveling

waves in the context of the elasticity equations (E). Let ý be a point of discontinuity of

(u,v) and note that (u(ý-),v(ý-)), (u(ý+),v(ý+)) satisfy the Rankine-Hugoniot condi-

tions (4.13). Consider a sequence of points {•.} with the property -- • as c - 0.

Define functions

Uc(() = UC(, + C), V(I) = •(G + C 0) -00 < ¢ < cc; (6.1)
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this introduces a stretching of the independent variable centered around the point t,, a

shifted version off. The uniform estimates (2.35), (2.36) imply that (U,, V,) are uniformly

bounded and that

TV( U,(.)= TV( u,( + .)= ýT u,(.) +_ C,
(6.2)TVc V,(.) = TV( v,(C, + .=TV4 ,. C.

Using Helly's theorem and a diagonal argument we establish the existence of a subsequence

and a function (U, V) such that

U,(ý, + c ) -+ U(C), v,(C. + ) -- V((), pointwise for - 00 < C < 00. (6.3)

Proposition 6.1. Let ý E S and suppose that {(} is a sequence of points with -- -.

Then the function (U((), V(Q)) defined in (6.3) is continuously differentiable and satisfies

on (-cc,co) the traveling wave equations

-ý[u - U(,C-)- (I"- V(ý-) ] = 0

-ý[V - v(ý-)] - [a(U) - (,(-))] k(U) dV (6.4)

with initial conditions

U(O) = lin U'(G) V(0) = lim v,(Q'). (6.5)

The limits lir U(() =: U±, jin V(() V± ezist, are finite, and (U., V_), (L+, V+)

satisfy the algebraic equations

-4 [u - U(ý-)] -[V - V(V-)] = 0 (66)

-ý[v - V(V-)] - [1(u) - O(U(H-))] = 0

Proof. The function (u,,v,) satisfies the weak form (2.5), (2.6). First evaluate (2.5)

between the points ý, + ( and 8 to obtain

(G + -') u(V, + 6() + v,(G + eW) - e ur(O) - v,(O) - uf,(7)dr = 0. (6.7)

In (6.7) let first - --+ 0 and then let consecutively O -- 0 + and O -- 0 -. Using (6.3), (4.1)

and (2.35), we arrive at

t - U(ý1)) + (V(() - v±)) = 0. (6.8)
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Next, we evaluate (2.6) at the points ý, + c C, B and integrate the resulting equation

in B between ý and ý + 6, for some 6, to arrive at

S+ C )VI(G + C 0 + cr(u,(ý, +,E O j v, (0) + oa(u,(0)) dO

-~jvej v('r) drdO -k(u,(ý, + c()) v'(ý + c)

+6-1 k(u,(B))v' (O)dB.
6j6

After some algebraic manipulations and an integration in • we get

fC ( + ± "S)V C(V +&S) +oa(1LL( S +ds))d

Jo k(u,(ý) + Es))

-61 k(u:(•. + es)) j J ,(r)d

(1j+6 +C d

=(u.()), + es))

Letting e - 0 and using (6.3), (4.1), (2.35), (4.14) and (2.12), we deduce

V (S) +or(U (s))d - +60 ( +([ ())

I k(U(s)) 1, +) s())dB) k(U(s)))(-9

0 k(U(s)) 6 a

From (6.9), by letting consecutively 6 - 0+ and 6 -- 0-, we obtain

1 k ())((V(s) - v(ý±)) + a(U(s)) - (u(±)))ds = -V(() + V() (6.10)k(U(s))

It follows from (6.8), (6.10) that (U((), V(()) are continuously differentiable functions

that satisfy the equations (6.4) and the initial conditions (6.5). Furthermore, the function

U(() satisfies the differential equation

C k(U) .= [a(U) - a(,(_-))1 42 ( CU - u(4-) (6.11)
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Since U, V are of bounded variation on IR, the limits lim (U((), V(()) -: (U+, V1)

exist and are finite. It is then straightforward to show that U+, U- are equilibrium states

of (6.11)

[(U±) - o(u(ý-)) -] 2(U± -_U(_-)] = 0. (6.12)

In turn, (6,8) implies that (U-, V_), (U+, V+) solve the algebraic equations (6.6). 1

The function (U, V), as well as the limiting values U±, V±, depends on the choice of

the sequence •. For certain choices of {•..} it may happen that (U-, V-) = (U+, V+) and

the traveling wave disintegrates to a constant solution. However, whenever a choice of shifts

produces a nonconstant solution (U, V) this will be a heteroclinic orbit for (6.4) connecting

two distinct equilibria (U-, V-) and (U+, V+) solving (6.6). In the latter case U(C) is a

solution of (6.11) connecting U- to U+, what imposes restrictions on all intermediate states

U. If, for instance, U- < U+ and 1 > 0 then

[o(u) -o(,(2-))- (U-u(_-) I>0, for U E (U-, U+). (6.13)

We proceed to investigate the rclation that {(uC, vC)} bears to the corresponding limit

(u, v) at a point ý E S. Issues of interest are to understand what types of discontinuities

are admissible and under what circumstances it is

(U_, V_) = (U(ý-), v(-)), (U+, V+) = (M(W+), V(W+)). (6.14)

We analyze a concrete case: ý > 0, u(ý-) < u(T+) and, in accordance with the Rankine-

Hugoniot conditions, v(ý-) > v(ý+); other cases can be treated in a similar fashion. In

the case under study (4.13) and (5.15) take the form

C2 a(u(ý+))- a(u(C-)) (6.15)
U(W+) - (-)

a,(,Cu(•+)) _< •.2 _< a,,(u(C-)) (6.16)

They impose restrictions on the placement of the graph of a(u) relative to the chord

connecting the points with coordinates (u(ý-), a(u(ý-))), (u(ý+), a(u(ý+))).
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u(u)

Figure 1

As a casc study consider a configuration where the graph cuts the chord at exactly two

intv'niediate points U1 and a2 (see Fig. 1). Then the set of states (U, V) solving (6.6) with

<(ý-) _< U < u(ý+) consists of (u(•-), v(ý-)), (u', vi), (u2, v2 ), (t,(ý+), v(ý+)) with

v1 , v- defined by

vi = v(ý-)- (ui - u(ý-)), i = 1,2.

We will show that such a discontinuity, although compatible with (6.15) and the Lax

conditions (6.16), can not appear as an s - 0 limit of solutions (u., v,) of (P,).

For ý > 0, u(ý-) < u(ý+), the restrictions on the shapes of solutions dictate that u,

is increasing and v, is decreasing on (0. oc). Fix states u0 1 , u02 and u0 3 in the intervals

((u(S'-), uO), (01, u2 ) and (u 2, u(ý+)), respectively, and define three sequences of points

{Mi,.} such that

ut(ýj.)=uoi, i= 1,2,3.

According to Proposition 6.1, the corresponding traveling waves Ui, defined by (6.3), satisfy

(6.11) with initial data Ui(0) = uoi. Therefore U1 connects u(ý-) to ul, U2 connects ul

to u,. while U-3 connects u2 to ZL(ý+). Note that U2 (Q) violates (6.13) and thus such a

traveling wave cannot appear, except in the case it, and u2 coincide.
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We conclude that for a shock at ý > 0 to arise as an e -- 0 limit of solutions (u,,v,)

of (P,), it must satisfy

[ >(U) _u(U(C-)) - 2 [U _U(ý-) 0, U E (u(C-), u(C+)), (6.17)

that is the graph of a(u) lies above the chord joining the end states. If (6.17) holds as a

strict inequality there is a choice of {C,} producing a single shock profile connecting u(C-)

to u(C+). If (6.17) holds as an equality at a finite number of points u., j = 1, ... , m, there

will be a chain of traveling waves connecting u(C-) to ul, each of the points ui to the next,

and urn to u(ý+). Finally, if (6, 17) holds as an equality on an interval, there is no shock

profile associated with the part of the solution taking values on the interval, but there are

shock profiles associated with the complementary part as before.

The same argument shows that when ý < 0 the inequality in (6.17) is reversed, which

geometrically means that the graph of a(u) must now lie below the chord. These conditions

arc sufficient for solving the Riemann problem by patching together elementary solutions,

in the class of rerefaction waves, shocks and contact discontinuities [W, L).
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